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Abstract. This paper presents a new method of constructing, certain classes of solutions of
a system of partial differential equations (PDEs) describing the non-stationary and isentropic
flow for an ideal compressible fluid. A generalization of the symmetry reduction method to the
case of partially-invariant solutions (PISs) has been formulated. We present a new algorithm
for constructing PISs and discuss in detail the necessary conditions for the existence of non-
reducible PISs. All these solutions have the defect structure 1 and are computed from
four-dimensional symmetric subalgebras. These theoretical considerations are illustrated by
several examples. Finally, some new classes of invariant solutions obtained by the symmetry
reduction method are included. These solutions represent central, conical, rational, spherical,
cylindrical and non-scattering double waves.

1. Introduction

This paper deals with the construction of several classes of exact solutions of the nonlinear
system describing the isentropic flow of an ideal fluid. In order to construct these solutions,

we apply the symmetry reduction method (SRM) to compute the invariant solutions and

then we develop a method to construct partially-invariant solutions (PISs). The PISs have
been introduced by Ovsiannikov [1] and can be seen as an extension of invariant solutions.
So far, the method to obtain PISs, in the classical form, has been applied for systems with
two independent and two dependent variables. We extend the applicability of this method
to systems with an arbitrary number of unknown functions and independent variables. We
develop a new algorithm for constructing these types of solutions. Furthermore, we are
interested in so-called non-reducible PISs, i.e. solutions which are not invariant with respect
to subgroups of the symmetry group of the governing system of equations.

We stress that the PISs are interesting for the following reasons: they can be constructed
from an algorithm which is similar to the one used in the invariant case and is simple to
use; PISs can solve larger classes of initial values problems compared to the invariant case;
finally, we can obtain invariant solutions, with respect to low-dimensional groups, which
would be very difficult to obtain directly by the SRM.

1 E-mail: grundlan@ere.umontreal.ca
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Consider the classical ideal fluid dynamics equations is (3 dimensions:
Dp + pdiv@m) =0
Di+p Vp=0 (1.1)
DS=0

where we use the following notationi is the density of the fluidp is the pressure of the
fluid; w = (u, v, w) is the vector field of the fluid velocity§ is the entropy of the fluid; and
D is the differential operator of the form B 9/dr + (u - V). We will reduce the system of
five quasilinear equations (1.1) in five unknown functiopsy, u) to the hyperbolic system
describing an isentropic flow, according to [2].

The state equation of the media is given by

p=f(p9). (1.2)
If we eliminate the entropy from the first equation in (1.1) then
Dp = a®Dp + fsDS
wherea? := f,. The third equation in (1.1) implies
Dp = a’Dp
and using the first equation in (1.1) we get
Dp = —pa?div(u).
The equations (1.1) become
Dp + pdiviw) =0
Di+pVp=0 (1.3)
Dp + pa®div(u) = 0.

The model of isentropic fluid requires thet is a function of the density only, i.e.

Vp =da?*(p)Vp
and

dﬁ — kfldp

a P

where k = 2/(y — 1) and y is the adiabatic exponent. The velocity of sound is
a = (yp/p)Y?. Therefore, the system of equations describing the non-stationary isentropic
flow of a compressible ideal fluid takes the form

Da + ka div(z) = 0

B 1.4)
Du + kaVa = 0.

We denote the space of dependent variableg/by R*, where(a, u) € U, and the space
of independent variables b¥ = R*, where(x*) = (t,x,v,z) € X, n = 0,1,2,3. The
system (1.4) represents a quasilinear hyperbolic system of four equations, written in the
Cauchy—Kovalevski form. The largest Lie symmetry algebra of these equations has been
investigated in [6]. It constitutes a Galilean similitude algebra generated by 12 operators.
In the particular case when the adiabatic exponegt g this algebra is generated by 13
infinitesimal operators: the 12 operators generating the Galilean similitude algebra and a
projective transformation.

This paper is divided into five sections. In section 2, we present all the necessary
background needed to understand the proposed algorithm for generating PISs. In section 3,
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these theoretical considerations are illustrated by several examples. In section 4, we present
algebraical, spherical, cylindrical and conical invariant solutions. Section 5 contains some
final remarks concerning the method of computation of PISs and their properties.

2. Construction of partially-invariant solutions

We start by giving all the theoretical notions needed to explain the algorithm of the
computation of the PISs. This algorithm can be applied to any system of differential
equations. Consider arth order system of PDEs:

Al(x,u™) =0 i=1...,m (2.2)

with p independent variablesc (= (x/) € X, j = 1,..., p) and ¢ dependent variables
wu=w)eU,l=1,..., q). Supposes is a local symmetry group of the equations (2.1)
which is fibre preserving (i.e. the transformation of the independent variables do not depend
on the dependent on the dependent variables) and which acts regularly on thé&(spate

The orbits arer-dimensional and its Lie algebra is generated by a set of infinitesimal

generators, says,...,v; (dim(L) = s > r). Supposex = f(x) is a solution of the
equations (2.1)I'; is the graph of this solution (diffr;) = p) and
Gol'y = {g - (x,u)|(x,u) € 'y, g € Go} (2.2)

where g - (x, u) is well defined. IfI"; is relatively compact in the spack x U, then
Gol's is a submanifold off x U. This set is called the orbit space Bf (the union of the
orbits of thel's-elements) and it is the smalle§l-invariant set which containk,. We
then have the following properties: (i) Ifs is a Go-invariant set (the solution = f(x)

is Go-invariant), thenGoI'y = I'y and dim(Gol'y) = p; (i) if Ty and all orbits ofGo

in X x U are transversal, then dii@oI's) = p 4+ min(r, g) and these solutions are called
generic. Consequently, we have the following inequalities:

p < dim(Gol'y) < p+ min(r, q). (2.3)
When the inequalities are strict, = f(x) is a PIS. For a comprehensive review of the

subject see, for example [3-5]. Ovsiannikov [1] has defined the defect structure of a
solution to characterize such solutions. The parameter

§ = dlm(GoFf) — dlm(I‘f) = dlm(G()Ff) —p (24)
is called the defect structure of the solutien= f(x) with respect to the grou.
Therefore, a solution is (i) invariant § = 0, (ii) partially invariant if 0< § < min(r, g)
and (iii) generic if6 = min(r,g). Then we can say that the PISs generalize invariant
solutions.

The defect structuré of a solutionu = f(x) can be calculated from the matrix of
characteristics of the generatars . . ., v, (Ovsiannikov [1], p 277). Let

P q
v = Zg,;(x)ax; + qu,i(x, u)d, k=1...,s (2.5)
i=1 =1
be these infinitesimal generators. The matrix of characteristics (of dimensior) with
respect to these generators is
0, u) = B%(x, u?)) a=1...,q B=1...,s (2.6)

where bg(x,u(l)) = ¢g(x,u) — leéé(x)au“/axi. Thenu = f(x) is a PIS of
equations (2.1), with defect structure with respecGipequal tod, if only if

ranI(Q(x, u(l))luzf(x) =34. (27)
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From this result, we can formulate a first method of calculation of the PISs. We construct an
augmented system which is composed of (a) the basis equations (2.1) and (b) the first-order
system, obtained by demanding that all determinants of the minors of @rdlel) x (§ + 1)
of the matrix of characteristics (2.6) are equal to zero. A solution of the augmented system
is thus a PIS of the system (2.1), with defect structureith respect to the groug,. For
example, wherd = 1, all the determinants of 2 2 minors of the matrix (2.6) vanish. This
method, however, has the disadvantage that it leads to many calculations with nonlinear
equations. Furthermore, we cannot distinguish the groups which will give genuine PISs,
i.e. solutions which are not invariant. In order to overcome these difficulties (to a certain
extent), we have developed an alternative algorithm of calculation.

To apply this algorithm, we need to determine the largest symmetry group of the
system (2.1). This group is supposed to be fibre preserving and we denotd4it We
refer to [7] for the calculations of this group. Then, we classify the subgroug$ ofto
conjugacy classes. The method of classification which has been employed is presented in
[8] and [9]. The subgroups of the grou, which have been chosen for the calculations
of the PISs, are as follows. Le; ¢ H be a representative of a conjugacy class. The
subgroupH; is fibre preserving and induces an action on the spac# the dimension of
the H; orbits on the spac& x U is s, then this subgroup will generate a PIS with defect
structures if the dimension of the orbits on the spa&eis s — §. Then the subgroup has
p + & — s invariants which depend only an and ¢ — § invariants which in turn depend
on x andu. We select the subgroupd; which have this characteristic. We note that a
subgroupH,, which is fibre preserving, generatég-invariant solutions if the dimension
of the orbits ofH, in the spaceX x U are equal to the dimension of the orbits on the space
X.

2.1. The algorithm for the calculation of PISs

Now, we give the description of our algorithm of the calculation. We supposethat H
is a subgroup with-dimensional orbits in the spacé x U, and § — §)-dimensional orbits
in the spaceX. The solutions which are obtained from this group will be PISs with the
defect structure equal #h The procedure involves several steps.
(i) Construct a complete set of functionally independent invariant&ffolf {vs, ..., vy}
is a basis of infinitesimal generators of the Lie algebra= exp(H;), then! is an invariant
of H; if and only if v;(I) =0, j =1,...,s. We obtain a set of functionally independent
invariants of the form

{n* (), I (x, )} (2.8)
wherek=1,...,p+d8—sandj=1,...,¢9g — 5. Then we have
A (x, u), ..., 1970 (x, u)
rank =q — 4. 2.9
< ) i (2.9)

(if) Express the g + §)-dimensional manifoldd; "y in terms of the invariants (2.8),
whereI'y is the graph of a functiom = f(x). H;I's is the smallest invariant manifold
containingT’;, with respect to the action of the groufy. These equations take the form

Fx,u) = f/(n*(x)) (2.10)

wherej=1,...,g—sandk=1,..., p+ 6§ —s. The functionsf/ are arbitrary.
(iii) From (2.9) and the implicit functions theorem, we have §or § coordinates inJ

u's = (I (n*(x), x, ul)) (2.11)
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wherea =1,...,9-48,1=1,...,8,j=1,...,.9g—8andk=1,...,p+ 38 —s. There
are no constraints on theremaining coordinates ity and we put

w = il (x) (2.12)
wherel = 1, ..., § and the functiong/! are arbitrary.
(iv) From equations (2.11) and (2.12), we calculate the derivatives ofuttle =
1,...,q) and we substitute these expressions into equations (2.1).

(v) Suppose that the rank of the system obtained from (iw) iglative to the derivatives
of the § functions given in (2.12). Thus we need to solve this system of equations &dr
these derivatives. From expressions (iv), we calculate the compatibility conditions for this
system of equations. From these constraints, we obtain a PDE system, denatédrby
expressed in terms of only the-s functions f/ of (2.10) and the invariants*(x), and a
system of PDEs denoted ky?, for the functionsp’! of (2.12).

(vi) Solve the systenn\//H'.

(vii) For each solution ofA’ /H', solve the systen®.

(viii) Substitute the solutions calculated in (vi) and (vii) into the equations given in
(2.11) and (2.12) to obtain a PIS with defect structbifer the system (2.1).

In the case of invariant solutions, there is a one-to-one correspondance between the
solutions of the reduced system and the invariant solutions of the basic system. For PISs,
we do not have such a correspondance. Indeed, for every solution of the sy&tém, we
have to solve the system?® to obtain a PIS for the system/. Thus, to a single solution
of the systemA//H', there may correspond a family of solutions of the systefn We
will encounter such a situation when there are solutionaofH* for which no solutions
of A' are compatible withA/.

Once these calculations are completed, we could check whether the solutions so obtained
are invariant with respect to some subgroups of the symmetry group. The calculations
needed for the symmetry group of high dimension are generally hard to perform, but we
may restrict our considerations to the subgroups of the grdugrom which we have
derived our original solutions. Ovsiannikov [1] has formulated the concept of reducibility
for such a problem.

A PISu = f(x), with respect to a groug;, is called reducible if (i) there exists
a subgroupH, C H; for which u = f(x) is H,-invariant and (ii) diiH,I'y) = st
where s > s — 8. We are interested in non-reducible PISs, since reducible solutions
can be calculated from reduced systems involving- s independent variables where
p — st < p+8—s. Therefore, these reduced systems are easier to solve than the systems
AJ/H' and A' which we have to solve to obtain PISs.

Now we present the results that we have obtained for the system (1.4), with examples
illustrating the calculations of PISs.

3. Examples of applications

We want to calculate PISs of the system (1.4) from subgrdtlipsf the largest symmetry
group of this system which have the following properties: (i) the defect structure of the
solutions is§ = 1; (i) A//H is a system of ordinary differential equations (ODES).
Therefore, we have to consider four-dimensional subgroups. Furthermore, we want to
construct certain classes of non-reducible solutions, i.e. solutions which are not invariant
with respect to the three-dimensional subgroupgfof

The Lie symmetry algebra of the system (1.4) is generated by the following infinitesimal
generators:
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(i) wheny # 5/3 (k # 3),
Py = dy Ji = erij (X' 0 + u'd,) K; = x%, + 0,
F = x"*,u G = —x%,0 + utn (3.1)
(ii) when y = 5/3 (k = 3), the 12 infinitesimal generators which appear in (3.1) and
the projective transformation
C = x°(x"9 — u®9,0) + (¢ — xu)d, 3.2)
wherei, j,k=1,2,3 andu =0, 1, 2, 3. We note that this algebra is fibre preserving. In
[6], we present the classification into conjugacy classes of the subalgebras of dimension
from one to four inclusively, of the algebra generated by the operators (3.1) and (3.2).
We start by giving examples illustrating the calculations involved in the algorithm which
help us to understand the results presented in our examples. Furthermore, we use the Lie

algebras of the subgroups, rather than the subgroups themselves, which are more convenient
for performing our calculations.

Example 1 Consider the Lie algebri& 1, K», K3, P3}. The set of functionally independent
invariants is

{x —ut,y —vt,a,t} (3.3)
Then we have

rank(B(x — ut,y — vt, a)) _3

I(u, v, w,a)

The PIS will have a defect structuée= 1. The equations, giving the orbits of the solutions,
are of the form

x —ut =F(t) y—vt =G(t) a=A() (3.4)
corresponding to equations (2.10) and (2.11). Then the expression for the solutions is
—_F —
u= * V= y-G w=w(,x,y,2) a=A(t). (3.5

t t
Note that no constraints have been imposed on the funatiowe calculate the derivatives
of functionsu, v, w anda from equations (3.5):

F—x F 1
ut:T_T ux=; I/Lyzuzzo
G-y G 1 3.6
v = 2 T, vy=v,=0 vyz; (3:6)
a; = A’ ar =ay, =a, =0.
Substituting these expressions into system (1.4) gives
A (2
A+ — < + w,) =0 (3.7)
k \t
F'=0 G =0 (3.8)
—F -G
w; + o ; )wx+ ) ; )wy+wa=O. (3.9

From (3.8), we obtainF = C;, G = C,, whereC1, C, are arbitrary constants. From (3.7),
we get

kA" 2
w:—( A +t)z+‘lf(t,x,y) (3.10)
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where we denot& (r) = kA'/A + 2/t. Then
w, = —dz + ¥, w, =W, wy, =W, w, = —. (3.11)
We substitute these derivatives into (3.9) and obtain

(x—=Cy) +(y—Cz)qj

R y— OV 4 7(d? - @) =0. (3.12)

Therefore, we must have

-C -C
+(x , 1)‘1’x+(y 2)\11
2 - @' =0. (3.14)

v, ,—dW =0 (3.13)

The systemA’/H consists of equations (3.8) and (3.14), and the systénis described
by equation (3.13). From (3.14), we obtain
-1 _ kA 2

o = = —. 3.15
t+Cs3 A +t ( )

Therefore,
A = Ca(t72(t + C3))~ Yk (3.16)

where C3 and C4 are arbitrary constants. We solve equations (3.13) by the method of
characteristics and we obtain

U = (t + C3) ', &) (3.17)

where: A : R? — R is an arbitrary function ané, = t(x — C1) %, & = t(y — C»)~L. Then
we obtain the solution

-C -C A t+ C3\Y*
_Xx=t _y— %2 w o 2 TAELE) a=Cq Ty (3.18)
t t t+ Cs 12

u

Next, we determine the solutions which are invariant with respect to one parameter
subgroups of the group discussed in the present example. These subgroups have their
Lie algebras generated by an infinitesimal generator of the form

v =a1K1 + asK» + a3K3 + a4 P3 (a; € R).

We have

—1/k
17<u—x_cl) =1')<v— y_Cz) =5<a—c4<t+f3> >=o. (3.19)
t 1 t

Thus we must put

_[ (Z-H»(Sl, Sz))} _
viw—\\——— —0
t4+C3

which gives the equation

alsf)ngl + az.‘;:zz)»gz =aq — azCs. (3.20)
Then
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(i) if azaz # 0,

-1
A = (as — a3zC3) ( + (p(X)) (3.22)
aér

whereg : R — R is an arbitrary function an& = 1/ax&, — 1/a1&1;

(i) if g =0 anda, # 0,

azC3z —a
p= e g e (3.22)
az

whereg : R — R is an arbitrary function;

(iii) if a1 # 0 anda, =0,

a3C3 — dg

= SRR () (3.23)

a
wheregp : R — R is an arbitrary function.

We note that this solution is invariant relative to the algefi@ + C3Ps}. A solution
which is not of the form given in (3.21), (3.22) or (3.23) is not invariant relative to any
algebra which has non-zero component onto the space generatéd doyd K. It is thus
a non-reducible PIS.

From this first example, we observe that non-reducible solutions can be constructed due
to the presence of an arbitrary functianin w. Indeed, with four-dimensional algebras
and defect structuré = 1, reducible solutions are invariant relative to three-dimensional
subalgebras. Then the corresponding reduced systems are ODEs and the invariant solutions
contain only arbitrary constants. Then, in this case, the existence of an arbitrary function in
a PIS assures the existence of non-reducible solutions which are obtained from equivalent
constraints given by equation (3.20).

In the next example, we perform a change of variables to facilitate the computation of
the PIS. Furthermore, the functions on which no constraints are imposed are not included
among the variables, v, w or a, but among the newly-defined variables.

Example 2 Consider the algebrdJs, P1, P>, P3}. We obtain the set of functionally
independent invariants

{(W?+v)Y2 w, a,1}. (3.24)
We make the change of variables

u = r cosd v =rsing (3.25)
and the new invariants are

r, w, a, t. (3.26)

The new invariants simplify the calculations, compared to those given in (3.24). We have

rank(a(r’w’a)> =3 (3.27)
a(r,w,a,0)

Thus the PIS which we will calculate will have defect structéiee 1. The equations giving
the orbits of this solution are

r = R(t) w=H)  a=AQ®. (3.28)
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Then, the expressions for this solution are given in (3.28) and we obtand v from
(3.25), where = 0(t, x, y, z). We calculate the derivatives of the functiansv, w anda
and we obtain the following system of equations:

A+ RA[COS(9)9 sin(0)6,] =0 R =0
k ’ t B (3.29)
6, + R cog0)6, + Rsin@0)0, + HO, =0 H =0.

Then R = C, and H = C,, where C,, C, are arbitrary real constants. We solve the
system (3.29) fop, and6, and we obtain

6, = Cy [~ cog6)(6; + C26.) + ksin@®)p']
6, = —C;Y[sin(®) (6, + C26.) + k cogh)p'] (3:30)
wherep(t) = In(A). The compatibility conditions, obtained from (3.30), give the equation
0" —k(p)?=0. (3.31)
The solution of equation (3.31) is
p =In(Cat + C5) "
and so
A = (Cat + C5) Y%,
Thus we obtain

0 = ¢(81, 82, &3) (3.32)

with ¢ being implicitly defined by the equation

Cy —C1Cs .
C1C5$1 +F < Ca sin(e) + &, 53)] (3.33)

¢ =cos? [
where F : R? — R is an arbitrary function; = x — C1z co90), & = y — C1z sin(@) and
&3 =z — Cot. Hence the solution is

u = C1co96) v = Cysind) w=Cy a = (Cyqt + Cs)"V* (3.34)

wheref is defined from (3.32) and (3.33). We have obtained non-reducible solutions because
(3.34) contains an arbitrary function. Such functions are determined exactly in the same
manner as in example 1.

In table 1, we present several examples of PISs which we have obtained from four-
dimensional subalgebras of the symmetry algebra of system (1.4). We find in this table
the following information: (a) the first column gives the algebras from which we compute
the solutions; (b) in the second column we give the invariants of the algebras; (c) in
the third column we give the expressions of the dependent variables, corresponding to
equations (2.11) and (2.12); (d) in the fourth column we give the solutions; and (e) in the
last column we specify parameters which appear in the expressions of the solutions. Note
that the solution, corresponding to the algebPa + K3, K>, P3, P1}, is not invariant with
respect to any three-dimensional subalgebras of the symmetry algebra of equations (1.4).



1732 A M Grundland and L Lalague

Table 1. Non-reducible partially-invariant solutions of the system of equations for isentropic
flows in (3+ 1) dimensions X : R2 — R represents an arbitrary function and ifigs represent
arbitrary constants).

Algebras Invariants Dependent variables  Solutions Remarks
- _ xHMELE) _

{K1, K2, P1, P3} {y—vt,w,a,t} u=u(tx,vy,2) u = T112 £1 = e
v= 2770 v= 250 f2=17—Cat
w= H(t) w = C3
a=A(t) a=Ca(t(t — Cp))~VE

{K1, K2, Pr, P3+aP}a>0 {y—oaz—vt,w,a,t} wu=u(,x,y,2) u:%‘a&) E&1=C3t —z
v = ):—azr—G(t) v = y+01C31[—az—C2 £ = y+aC3tia27C2
w= H(t) w=Cs
a=A(t) a=Ca(t(t — Cr))~VE

{K1+ P3, K2, P1, P>} {z—u,w,a,rt} u=z—F(t) u=z—Cst—Cy £1=7— Cat
V=, x,Y,2) v =G0 £r= Cax — (z — Cat — C1)z
w= H(t) w=Cs
a=A(@) a = Cyt + Cp)~Vk

{P1, P2P3, K3} {u,v,a,t} u=F(@) u==C £1=x— Cat
v=—-G(1) v=2C2 Er=y—Cat
w=uwt,xyz)  w=a
a=A(@) a = Ca(t + C3)~M*

{P2+ K3, K2, P3, P1} {u,y —vt —w,a,t} u= F() u==Co g R — R, arbitrary

— _ (pP—q1)y+qz—qC3t+g(§) —
v=uv(tx,Y,2) U—W E=x—Cat
w=y—vt+H@E) w= >*‘1f~+l+3p(r:r£’)*’g(5) p.q €R
c

_ — 1
a=A0 4= Trp—at 2
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4. Invariant solutions

The graph of aGp-invariant solution is an invariant set, with respect to the gréygpunlike

a PIS. The groupiGo must also satisfy the following two conditions: (i) the dimension of

the orbits in the space¥ and X x U is the same; and (ii) ditGo) < p. The algorithm

to construct these solutions can be obtained from the one presented in section 2 by setting
8 = 0. We obtain a reduced system, which is expressed only in terms of the invariants
and their derivatives with respect to the symmetry variable, from which we obtain the
invariant solutions. Now, we present several examples which illustrate the calculation of
invariant solutions. In [10], an optimal system of invariant solutions has been obtained for
the system (1.4), with respect to the three-dimensional subgroups of the symmetry group of
this system.

Example 3. Cylindrical solutions We consider the algebra generated by

J3 =x0y — y0y + ud, — v, Py =0; P3 =0,. (4.2)
The global invariants are
5 = (x2 + y2)1/2 ol — (uz + U2)1/2’ w,a
4.2
P2=sint( " ) st " (4-2)
(x2 + y2)1/2 (u2 + v2)1/2

wherex? + y2 # 0, u? +v? # 0 ands is the symmetry variable. As our symmetry variable
is s, the invariant solution will be of the cylindrical type. We form the expressions

2, 212 _ (MY et (X)) =
W2 + v2)Y2 = F(s) sin (s) sin <F>_G(s)
w = H(s) a= A(s)

(4.3)

which give us an expression for an invariant function in the space of the invariants. Then
we have

F . F .
u = —(x cogG) — ysin(G)) v = —(yco9G) + x sin(G))
s s (4.4)
w=H a=A.
From this, we calculate the partial derivatives of the dependent variables and we obtain

X . , F . y ’
Uy = 5 (x COYG) — ySING))F' + —, (y CoSG) + x SIN(G)) (* —xG )
N s s

y - _F i : /
uy = 5 (xco4G) — ysin(G))F' — — (y co9G) + x sin(G)) (7 + yG)
52 S2 S
ur=u; =0

X . , F ) y /
vy = — (yC0SG) + x SIN(G)) F' — — (x coG) — y SiN(G)) (, —xG )
N s s

4.5
y - o F i . / ()
vy = ﬁ(y co9G) + x sin(G))F' + ;(x cogG) — ysin(G)) <; * yG)
v =v,=0
w;:wZZO wx:fH, wy:XH/
s s
a=a,=0 ay = fA/ ay = XA,.

N : N
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We substitute expressions (4.5) into (1.4), and we obtain the equations

FcogG)A' + % (cos(G)F’ + <COTG) - sin(G)G’) F) =0 (4.6)
coSG)(x cogG) — ySiN(G)) FF' — co9G)(y cogG) + x sin(G)) F2G’
_SING)  Sin(G) + y oSG F? + kx AA = 0 4.7)

S
coSG)(y cogG) + x SiIN(G)) FF' + co9G)(x coG) — y sin(G)) F2G’
sin(G)
+
S
scoSG)H' =0. (4.9
These four equations do not form the reduced system because equations (4.7) and (4.8) are

not expressed only in terms of the invariants. However, the following combinations of the
equations, with variable coefficients,

(x c0gG) — ySiN(G))F2 4+ kyAA' =0 (4.8)

x(4.8) — y(4.7) and x(4.7) + y(4.8) (4.10)
eliminate all non-invariant terms and we obtain the equations
SiN(G)FF' 4+ coSG)F2G' + s~ 1sin(G)F? =0 (4.11)
52Co0€(G)FF' — 52co9G) Sin(G) F?G’ — s Sirf(G)F? + ks?AA’ = 0. (4.12)

The reduced system is thus formed by equations (4.6), (4.9), (4.11) and (4.12). Our method
has led us to two types of solutior and H are arbitrary functions of the variable

G — (2k+1)

2 F2 1/2
w(k € N) and A=+ (k / o ds) (4.13)

and

(4.14)

1/k
Fecoesmort = a=c[MOPEERD]

whereG is defined implicitly by the equation

2 2/k
s2sind(G) [—ZCZ f <tan(G/2)(l+ tanG/2)) ) 1 G+ cg] —1=0

C? 1—tan(G/2) sin(G) - cogG) d

whereCy # 0, 2k+1)m < G < ((4k+3)/2)w or 2k < G < ((4k+1)/2)m (k € Z), which
guarantee the existence of real non-singular solutions. Since we have explicit expressions
for the functionsF, G, H and A, we substitute them into equations (4.4) and we find an
invariant solution of the system (1.4) with respect to the algebra considered.

In the next example, we show that an algebra which should give only PISs can give
invariant solutions under some conditions on the functions, w anda. This solution is
of spherical type.

Example 4. Spherical solutions We consider the algebfd, J», J3}. The global invariants
of this algebra are:

t s= 2+ y?+H)Y? ol = W? + 2+ w?)?
<I>2:xu+yv+zu) o3 =a.

o, @2, @3
rank(a(”)> =3.

o(u, v, w, a)

We have
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Therefore, we cannot obtain invariant solutions from these invariants by the SRM. The
equations giving the orbit of the graph are

_ g(s, 1) —xu —zw

u=u(tx,y,z) v
y
= 28 =g, 0) E Y2, 1) — u?) (v +22) — (v — (s, )2 (4.15)
- y2 +Z2
a=A(s,1t)

where ®! = f(s,t) and ®? = g(s, t) are arbitrary functions. Substituting equation (4.15)
into (1.4) gives us the reduced system

As A _ 2 2\ _ 2
a4 8% [ux N <Xyz(xu g) +Zyu(y2 +2°) —pxy >
k y(y*+z9)¢
zx@ + (V2 + 29 yu +xy(xu — g)
Xy — 2, ,2 Yz
"+ 299
g  z(@2+y*-1) A2 +y? -1
+— - ©+ (xu—g)[=0
s y(y% +22) y2(y2 +2%)? (4.16)
y(xu—g) +z¢ yo —z(xu — g) kxAA
e G e =0
Uy + uu ( y2~|—12 )uy ( y2+22 U, + p

o+ 5 frksaa, — f2=0
S

2 2
x4+
2 88s k< sy

; + z> AA, — f2=0
whereg = [(f2 — u?)(y? + z%) — (xu — g)?]¥?. To compute the solutions of (4.16), we
have to satisfy the compatibility conditions (see the algorithm presented in section 2.1).
Thus the solution will be a non-reducible PIS, because this algebra does not contain any
two-dimensional subalgebras. We will not continue with these calculations here, but we
will show that we can obtain solutions with spherical symmetry by considering functions
with a special form.

In order to do this, we write the functions v, w anda in the following form:

ut = x"f(s, 1) a=A(s,1) nw=1273 (4.17)
where f and A will be determined from the condition that the functions defined in (4.17)
are solutions of (1.4). Since

Jiw"* —x"*f(s,1)) =0 Ji(a—A(s, 1)) =0 w,i=123
the functions in (4.17) are invariant with respect to the alggb¥aJ,, J3}. This case

corresponds to a non-stationary flow with spherical symmetry, which is irrotational.
System (1.4) is thus reduced to the equations

A+ sfA;+kTABSf +sf,) =0 fi+sffs +ksTTAA, + f2=0. (4.18)

We look for solutions of (4.18) by the method of separation of variables. Hence, we put
A = a1(t)h1(s), f = aa(t)ha(s). We obtain

ap = ek Y21 ay =27t (MeRandi #0, t >0, € =+1) (4.19)
and the non-autonomous ODE system
dhl _ Shlhz((k — 1))L1 — Zhg) dhz _ kklszh% + 3)»%}1%}12 — kk?h% — kszhg

ds  (ks?hi—A2hD) ds s(ks?h3 — A3h3)
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whose solutions exist ih2 # A;%ks?h3. For the stationary case (i.e. ff and A do not
depend orr in expressions (4.17)) we obtain the solution

MH — Clx,us—(k+3)/k+l a = E(_k)l/ZCl—l/kS—Z/k-Fl w= 1’ 2’ 3
wheree = +1, C; > 0 andx? + y? 4+ z? > 0. These conditions guarantee the existence of
real and non-singular solutions.

Example 5. Conical solutions We consider the algebr@/;, C, K1}. The corresponding
invariants are the symmetry variable= r~1(y2 + z9)Y2, F(s) = x — ut,

| y i _q y - vt
G =si ((yz n z2>1/2) s <(<y Sy wr)Z)l/Z)
H(s) = ((y — v1)* + (z — w)H)M?
and A(s) = at. Then, the unknown functions take the form

x—F y H .
u= . v = e ?(y cogG) — z sIiN(G))

. H . A (4.20)
w=f——2(zcos(G)+ysm(G)) a=—.

st t

We obtain the reduced system
! A / ’ H
HA +§ H — HtanG)G'+ — ) =0
N

sHCcoSG)F' =0
sSIN(G)H' + sH coSG)G' + Hsin(G) =0
s COS(G)HH' — 5sin(G) coSG)H?G' + 3sAA’ — H?sir?(G) = 0.
We have calculated the following solutions. AfcoSG) # 0, thenH is implicitly defined
by
(—3C)Y?(s?H® — C3)YSH + C3—5 =0
and
G =cos (s *H 1 (s*H? — C5H)Y?) F=C
A= Cy(s*H> - C5H7V/®
whereCy < 0. Since we have an explicit expression fdr we substituteF’, G, H and A

into equations (4.20) in order to get an invariant solution of (1.4)H ko G) = 0, two
solutions are possible:

0]
_F C
y = v=" w=" and  a=—2
t t t t
(i)
—M_F(S) U_X G% w—Z_€@
ot ot 122 ot %2
(3Cas? — C3)

whereF is an arbitrary function of. These solutions represent centred waves with conical
symmetry. Some of them have been studied by Burnat [11,12] and Rozdestvenski and
Janenko [13].
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Example 6. Algebraic solutions We consider the algebra
{Ki+oa1Pr+az2P; +a3P3, Ko —oapP1+ B1Po+ B2P3, Kz — aszPr — BaPa}
whereay > 0, B2 > 0; a1, a3, f1 € R. The invariants are the symmetry variable
F(t) =x — (t + apu + arv + azw
G(@)=y—oau—(+ B)v+ fow
H(t) =z —oa3u — fov —tw

andA(t) = a. From these invariants, we obtain the following expressions for the dependent
variables:

Y= (F —x)(t(t + B1) + B2) + (G — y) (oot — azfa) + (H — ) (a3t + B1) + a2B2)
Ay
v — (x — F)(apt +a3fo) + (G — y)(t(t + 1) + a3) + (H — 2)(Ba(t + a1) — ap03)
Ay
w = [(x — F)(—a3(t + B1) + a2p2) — (G — y)(B3(t + 1) + azap)
+(H — 2)((t + a)(t + B1) + ad)](AD "

where
A =3+ (B1+ a)t? + (1f1 + B5 + a5 + ad)t + a2py + a3
The reduced system is
;LA (32 + 2t (B + 1) + a1y + B3+ o3 + o)
k (134 (B1 + a)t? + (a1f1 + B2 + af + ad)t + a3f1 + a1 3)
(t(t + B1) + B F + (ot — asf2)G’ + (as(t + B1) +axfo)H' =0

—(@at +a3fo) F' + (t(t + 1) + a5)G’ + (B2t + 1) — apaz) H' =0
(—as(t + B1) + @2B2) F' — (Ba(t + 1) + 2302)G' + ((t + 1)t + p1) + a5)H' = 0.

The solution has the form

Y= (C1—x)(t(t + B1) + BS) + (C2 — y)(aat — a3f2) + (C3 — z)(aa(t + Pr)azB2)
Ay
v — (x = Co)(at + a3fa) + (C2 — y)(t(t + 1) + &3) + (C3 — 2)(B2(t + a1) — a20t3)
Aq
w = [(x — C1)(—aa(t + B1) + azfo) — (C2 — y)(Ba(t + 1) + azap)
+(C3—2)((t + ar)(t + B1) + )] (A)
a=Cy(—Ap)~ Y~

Then the solution is a rational function. In order that the functiobe well defined, real

and non-singular for every, we must impose the conditioh; < 0. Thent € D where

D = (—00,a1) U (az,az), whenA1(a;) = 0,a;, € R (i = 1,2,3), anda; < a» < agz;

D = (—00, a1), whena; is the only root ofA;. Therefore, the domain of definition of the
solution is D x R3. On this domain, no gradient catastrophe appears and no shock wave
can be produced [14]
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5. Final remarks

The main difference between the method of calculation of the PISs proposed by Ovsiannikov
and our method lies in the choice of the groups from which we calculate the PISs.
Ovsiannikov suggests that every symmetry group of a system of differential equations can
generate PISs, for a given defect structiireven if the group fulfills the conditions which
allow us to construct invariant solutions from this group. In this case, we should use the
first method of calculation presented in section 2 in order to obtain these solutions (i.e. the
method with the matrix of characteristics). But the solutions which are obtained are not
genuine PISs. Indeed, we can always find coordinates in which these solutions are invariant.
To conclude, let us remark that the method developed here, to obtain PISs, can also be
used to describe phenomena concerning the superposition of waves in nonlinear continuous
media, and in some cases we are able to determine the points at which the gradient
catastrophe takes place. An example is the group generatdd;b¥®,, Ps}. We obtain
the PIS

u=s v=1G(@r) — w? w=H() a=kts+C;  (5.1)
where the Riemann invariants are

s = (Cit —x)(L— )7t B=ktk+1
and

r=0-p""x+Ci(B-D 7t — 1)

whereG and H are arbitrary functions of the invariant C; is an arbitrary constant and
B # —1. The solution (5.1) has rank two and therefore represents non-scattering double
Riemann waves [15].
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