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Abstract. This paper presents a new method of constructing, certain classes of solutions of
a system of partial differential equations (PDEs) describing the non-stationary and isentropic
flow for an ideal compressible fluid. A generalization of the symmetry reduction method to the
case of partially-invariant solutions (PISs) has been formulated. We present a new algorithm
for constructing PISs and discuss in detail the necessary conditions for the existence of non-
reducible PISs. All these solutions have the defect structureδ = 1 and are computed from
four-dimensional symmetric subalgebras. These theoretical considerations are illustrated by
several examples. Finally, some new classes of invariant solutions obtained by the symmetry
reduction method are included. These solutions represent central, conical, rational, spherical,
cylindrical and non-scattering double waves.

1. Introduction

This paper deals with the construction of several classes of exact solutions of the nonlinear
system describing the isentropic flow of an ideal fluid. In order to construct these solutions,
we apply the symmetry reduction method (SRM) to compute the invariant solutions and
then we develop a method to construct partially-invariant solutions (PISs). The PISs have
been introduced by Ovsiannikov [1] and can be seen as an extension of invariant solutions.
So far, the method to obtain PISs, in the classical form, has been applied for systems with
two independent and two dependent variables. We extend the applicability of this method
to systems with an arbitrary number of unknown functions and independent variables. We
develop a new algorithm for constructing these types of solutions. Furthermore, we are
interested in so-called non-reducible PISs, i.e. solutions which are not invariant with respect
to subgroups of the symmetry group of the governing system of equations.

We stress that the PISs are interesting for the following reasons: they can be constructed
from an algorithm which is similar to the one used in the invariant case and is simple to
use; PISs can solve larger classes of initial values problems compared to the invariant case;
finally, we can obtain invariant solutions, with respect to low-dimensional groups, which
would be very difficult to obtain directly by the SRM.
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Consider the classical ideal fluid dynamics equations in (3+ 1) dimensions:

Dρ + ρ div(u) = 0

Du + ρ−1∇p = 0

DS = 0

(1.1)

where we use the following notation:ρ is the density of the fluid;p is the pressure of the
fluid; u = (u, v, w) is the vector field of the fluid velocity;S is the entropy of the fluid; and
D is the differential operator of the form D= ∂/∂t + (u · ∇). We will reduce the system of
five quasilinear equations (1.1) in five unknown functions (ρ, p, u) to the hyperbolic system
describing an isentropic flow, according to [2].

The state equation of the media is given by

p = f (ρ, S). (1.2)

If we eliminate the entropy from the first equation in (1.1) then

Dp = a2Dρ + fSDS

wherea2 := fρ . The third equation in (1.1) implies

Dp = a2Dρ

and using the first equation in (1.1) we get

Dp = −ρa2 div(u).

The equations (1.1) become

Dρ + ρ div(u) = 0

Du + ρ−1∇p = 0

Dp + ρa2 div(u) = 0.

(1.3)

The model of isentropic fluid requires thata2 is a function of the densityρ only, i.e.

∇p = a2(ρ)∇ρ

and
da

a
= k−1 dρ

ρ

where k = 2/(γ − 1) and γ is the adiabatic exponent. The velocity of sound is
a = (γp/ρ)1/2. Therefore, the system of equations describing the non-stationary isentropic
flow of a compressible ideal fluid takes the form

Da + k−1a div(u) = 0

Du + ka∇a = 0.
(1.4)

We denote the space of dependent variables byU = R4, where(a, u) ∈ U , and the space
of independent variables byX = R4, where(xµ) = (t, x, y, z) ∈ X, µ = 0, 1, 2, 3. The
system (1.4) represents a quasilinear hyperbolic system of four equations, written in the
Cauchy–Kovalevski form. The largest Lie symmetry algebra of these equations has been
investigated in [6]. It constitutes a Galilean similitude algebra generated by 12 operators.
In the particular case when the adiabatic exponentγ = 5

3, this algebra is generated by 13
infinitesimal operators: the 12 operators generating the Galilean similitude algebra and a
projective transformation.

This paper is divided into five sections. In section 2, we present all the necessary
background needed to understand the proposed algorithm for generating PISs. In section 3,
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these theoretical considerations are illustrated by several examples. In section 4, we present
algebraical, spherical, cylindrical and conical invariant solutions. Section 5 contains some
final remarks concerning the method of computation of PISs and their properties.

2. Construction of partially-invariant solutions

We start by giving all the theoretical notions needed to explain the algorithm of the
computation of the PISs. This algorithm can be applied to any system of differential
equations. Consider annth order system of PDEs:

1i(x, u(n)) = 0 i = 1, . . . , m (2.1)

with p independent variables (x = (xj ) ∈ X, j = 1, . . . , p) and q dependent variables
(u = (ul) ∈ U , l = 1, . . . , q). SupposeG0 is a local symmetry group of the equations (2.1)
which is fibre preserving (i.e. the transformation of the independent variables do not depend
on the dependent on the dependent variables) and which acts regularly on the spaceX ×U .
The orbits arer-dimensional and its Lie algebraL is generated by a set of infinitesimal
generators, sayv1, . . . , vs (dim(L) = s > r). Supposeu = f (x) is a solution of the
equations (2.1),0f is the graph of this solution (dim(0f ) = p) and

G00f = {g · (x, u)|(x, u) ∈ 0f , g ∈ G0} (2.2)

where g · (x, u) is well defined. If0f is relatively compact in the spaceX × U , then
G00f is a submanifold ofX × U . This set is called the orbit space of0f (the union of the
orbits of the0f -elements) and it is the smallestG0-invariant set which contains0f . We
then have the following properties: (i) if0f is a G0-invariant set (the solutionu = f (x)

is G0-invariant), thenG00f = 0f and dim(G00f ) = p; (ii) if 0f and all orbits ofG0

in X × U are transversal, then dim(G00f ) = p + min(r, q) and these solutions are called
generic. Consequently, we have the following inequalities:

p 6 dim(G00f ) 6 p + min(r, q). (2.3)

When the inequalities are strict,u = f (x) is a PIS. For a comprehensive review of the
subject see, for example [3–5]. Ovsiannikov [1] has defined the defect structure of a
solution to characterize such solutions. The parameter

δ = dim(G00f ) − dim(0f ) = dim(G00f ) − p (2.4)

is called the defect structure of the solutionu = f (x) with respect to the groupG0.
Therefore, a solution is (i) invariant ifδ = 0, (ii) partially invariant if 0< δ < min(r, q)

and (iii) generic if δ = min(r, q). Then we can say that the PISs generalize invariant
solutions.

The defect structureδ of a solutionu = f (x) can be calculated from the matrix of
characteristics of the generatorsv1, . . . , vs (Ovsiannikov [1], p 277). Let

vk =
p∑

i=1

ξ i
k(x)∂xi +

q∑
l=1

φl
k(x, u)∂ul k = 1, . . . , s (2.5)

be these infinitesimal generators. The matrix of characteristics (of dimensionq × s) with
respect to these generators is

Q(x, u(1)) = (bα
β(x, u(1))) α = 1, . . . , q β = 1, . . . , s (2.6)

where bα
β(x, u(1)) = φα

β (x, u) − ∑p

i=1 ξ i
β(x)∂uα/∂xi . Then u = f (x) is a PIS of

equations (2.1), with defect structure with respect toG0 equal toδ, if only if

rank(Q(x, u(1))|u=f (x) = δ. (2.7)
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From this result, we can formulate a first method of calculation of the PISs. We construct an
augmented system which is composed of (a) the basis equations (2.1) and (b) the first-order
system, obtained by demanding that all determinants of the minors of order(δ+1)× (δ+1)

of the matrix of characteristics (2.6) are equal to zero. A solution of the augmented system
is thus a PIS of the system (2.1), with defect structureδ with respect to the groupG0. For
example, whenδ = 1, all the determinants of 2× 2 minors of the matrix (2.6) vanish. This
method, however, has the disadvantage that it leads to many calculations with nonlinear
equations. Furthermore, we cannot distinguish the groups which will give genuine PISs,
i.e. solutions which are not invariant. In order to overcome these difficulties (to a certain
extent), we have developed an alternative algorithm of calculation.

To apply this algorithm, we need to determine the largest symmetry group of the
system (2.1). This group is supposed to be fibre preserving and we denote it byH̄ . We
refer to [7] for the calculations of this group. Then, we classify the subgroups ofH̄ into
conjugacy classes. The method of classification which has been employed is presented in
[8] and [9]. The subgroups of the group̄H , which have been chosen for the calculations
of the PISs, are as follows. LetHi ⊂ H̄ be a representative of a conjugacy class. The
subgroupHi is fibre preserving and induces an action on the spaceX. If the dimension of
the Hi orbits on the spaceX × U is s, then this subgroup will generate a PIS with defect
structureδ if the dimension of the orbits on the spaceX is s − δ. Then the subgroup has
p + δ − s invariants which depend only onx and q − δ invariants which in turn depend
on x and u. We select the subgroupsHi which have this characteristic. We note that a
subgroupHk, which is fibre preserving, generatesHk-invariant solutions if the dimension
of the orbits ofHk in the spaceX ×U are equal to the dimension of the orbits on the space
X.

2.1. The algorithm for the calculation of PISs

Now, we give the description of our algorithm of the calculation. We suppose thatHi ⊂ H̄

is a subgroup withs-dimensional orbits in the spaceX × U , and (s − δ)-dimensional orbits
in the spaceX. The solutions which are obtained from this group will be PISs with the
defect structure equal toδ. The procedure involves several steps.

(i) Construct a complete set of functionally independent invariants forHi . If {v1, . . . , vs}
is a basis of infinitesimal generators of the Lie algebraLi = exp(Hi), thenI is an invariant
of Hi if and only if vj (I ) = 0, j = 1, . . . , s. We obtain a set of functionally independent
invariants of the form

{ηk(x), I j (x, u)} (2.8)

wherek = 1, . . . , p + δ − s andj = 1, . . . , q − δ. Then we have

rank

(
∂(I 1(x, u), . . . , I q−δ(x, u)

∂(u1, . . . , uq)

)
= q − δ. (2.9)

(ii) Express the (p + δ)-dimensional manifoldHi0f in terms of the invariants (2.8),
where0f is the graph of a functionu = f (x). Hi0f is the smallest invariant manifold
containing0f , with respect to the action of the groupHi . These equations take the form

I j (x, u) = f j (ηk(x)) (2.10)

wherej = 1, . . . , q − δ andk = 1, . . . , p + δ − s. The functionsf j are arbitrary.
(iii) From (2.9) and the implicit functions theorem, we have forq − δ coordinates inU

uia = 8ia (f j (ηk(x), x, ujl )) (2.11)
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wherea = 1, . . . , q − δ, l = 1, . . . , δ, j = 1, . . . , q − δ andk = 1, . . . , p + δ − s. There
are no constraints on theδ remaining coordinates inU and we put

ujl = ϕjl(x) (2.12)

wherel = 1, . . . , δ and the functionsϕjl are arbitrary.
(iv) From equations (2.11) and (2.12), we calculate the derivatives of theul(l =

1, . . . , q) and we substitute these expressions into equations (2.1).
(v) Suppose that the rank of the system obtained from (iv) isrδ relative to the derivatives

of the δ functions given in (2.12). Thus we need to solve this system of equations forrδ of
these derivatives. From expressions (iv), we calculate the compatibility conditions for this
system of equations. From these constraints, we obtain a PDE system, denoted by1j/H i ,
expressed in terms of only theq–δ functionsf j of (2.10) and the invariantsηk(x), and a
system of PDEs denoted by11, for the functionsϕjl of (2.12).

(vi) Solve the system1j/H i .
(vii) For each solution of1j/H i , solve the system11.
(viii) Substitute the solutions calculated in (vi) and (vii) into the equations given in

(2.11) and (2.12) to obtain a PIS with defect structureδ for the system (2.1).
In the case of invariant solutions, there is a one-to-one correspondance between the

solutions of the reduced system and the invariant solutions of the basic system. For PISs,
we do not have such a correspondance. Indeed, for every solution of the system1j/H i , we
have to solve the system11 to obtain a PIS for the system1j . Thus, to a single solution
of the system1j/H i , there may correspond a family of solutions of the system11. We
will encounter such a situation when there are solutions of1j/H i for which no solutions
of 11 are compatible with1j .

Once these calculations are completed, we could check whether the solutions so obtained
are invariant with respect to some subgroups of the symmetry group. The calculations
needed for the symmetry group of high dimension are generally hard to perform, but we
may restrict our considerations to the subgroups of the groupHi from which we have
derived our original solutions. Ovsiannikov [1] has formulated the concept of reducibility
for such a problem.

A PIS u = f (x), with respect to a groupHi , is called reducible if (i) there exists
a subgroupHa ⊂ Hi for which u = f (x) is Ha-invariant and (ii) dim(Ha0f ) = s1

where s1 > s − δ. We are interested in non-reducible PISs, since reducible solutions
can be calculated from reduced systems involvingp − s1 independent variables where
p − s1 6 p + δ − s. Therefore, these reduced systems are easier to solve than the systems
1j/H i and11 which we have to solve to obtain PISs.

Now we present the results that we have obtained for the system (1.4), with examples
illustrating the calculations of PISs.

3. Examples of applications

We want to calculate PISs of the system (1.4) from subgroupsH of the largest symmetry
group of this system which have the following properties: (i) the defect structure of the
solutions isδ = 1; (ii) 1j/H is a system of ordinary differential equations (ODEs).
Therefore, we have to consider four-dimensional subgroups. Furthermore, we want to
construct certain classes of non-reducible solutions, i.e. solutions which are not invariant
with respect to the three-dimensional subgroups ofH .

The Lie symmetry algebra of the system (1.4) is generated by the following infinitesimal
generators:
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(i) when γ 6= 5/3 (k 6= 3),

Pµ = ∂xµ Jk = εkij (x
i∂xj + ui∂uj ) Ki = x0∂xi + ∂ui

F = xµ∂xµ G = −x0∂x0 + uµ∂uµ (3.1)

(ii) when γ = 5/3 (k = 3), the 12 infinitesimal generators which appear in (3.1) and
the projective transformation

C = x0(xµ∂xµ − u0∂u0) + (xi − x0ui)∂ui (3.2)

wherei, j, k = 1, 2, 3 andµ = 0, 1, 2, 3. We note that this algebra is fibre preserving. In
[6], we present the classification into conjugacy classes of the subalgebras of dimension
from one to four inclusively, of the algebra generated by the operators (3.1) and (3.2).

We start by giving examples illustrating the calculations involved in the algorithm which
help us to understand the results presented in our examples. Furthermore, we use the Lie
algebras of the subgroups, rather than the subgroups themselves, which are more convenient
for performing our calculations.

Example 1. Consider the Lie algebra{K1, K2, K3, P3}. The set of functionally independent
invariants is

{x − ut, y − vt, a, t}. (3.3)

Then we have

rank

(
∂(x − ut, y − vt, a)

∂(u, v, w, a)

)
= 3.

The PIS will have a defect structureδ = 1. The equations, giving the orbits of the solutions,
are of the form

x − ut = F(t) y − vt = G(t) a = A(t) (3.4)

corresponding to equations (2.10) and (2.11). Then the expression for the solutions is

u = x − F

t
v = y − G

t
w = w(t, x, y, z) a = A(t). (3.5)

Note that no constraints have been imposed on the functionw. We calculate the derivatives
of functionsu, v, w anda from equations (3.5):

ut = F − x

t2
− F ′

t
ux = 1

t
uy = uz = 0

vt = G − y

t2
− G′

t
vx = vz = 0 vy = 1

t

at = A′ ax = ay = az = 0.

(3.6)

Substituting these expressions into system (1.4) gives

A′ + A

k

(
2

t
+ wz

)
= 0 (3.7)

F ′ = 0 G′ = 0 (3.8)

wt + (x − F)

t
wx + (y − G)

t
wy + wwz = 0. (3.9)

From (3.8), we obtainF = C1, G = C2, whereC1, C2 are arbitrary constants. From (3.7),
we get

w = −
(

kA′

A
+ 2

t

)
z + 9(t, x, y) (3.10)
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where we denote8(t) = kA′/A + 2/t . Then

wt = −8z + 9t wx = 9x wy = 9y wz = −8. (3.11)

We substitute these derivatives into (3.9) and obtain

9t + (x − C1)

t
9x + (y − C2)

t
9y − 89 + z(82 − 8′) = 0. (3.12)

Therefore, we must have

9t + (x − C1)

t
9x + (y − C2)

t
9y − 89 = 0 (3.13)

82 − 8′ = 0. (3.14)

The system1i/H consists of equations (3.8) and (3.14), and the system11 is described
by equation (3.13). From (3.14), we obtain

8 = −1

t + C3
= kA′

A
+ 2

t
. (3.15)

Therefore,

A = C4(t
−2(t + C3))

−1/k (3.16)

where C3 and C4 are arbitrary constants. We solve equations (3.13) by the method of
characteristics and we obtain

9 = (t + C3)
−1λ(ξ1, ξ2) (3.17)

where: λ : R2 → R is an arbitrary function andξ1 = t (x − C1)
−1, ξ2 = t (y − C2)

−1. Then
we obtain the solution

u = x − C1

t
v = y − C2

t
w = z + λ(ξ1, ξ2)

t + C3
a = C4

(
t + C3

t2

)1/k

. (3.18)

Next, we determine the solutions which are invariant with respect to one parameter
subgroups of the group discussed in the present example. These subgroups have their
Lie algebras generated by an infinitesimal generator of the form

v̄ = a1K1 + a2K2 + a3K3 + a4P3 (ai ∈ R).

We have

v̄

(
u − x − C1

t

)
= v̄

(
v − y − C2

t

)
= v̄

(
a − C4

(
t + C3

t2

)−1/k
)

= 0. (3.19)

Thus we must put

v̄

[
w −

(
z + λ(ξ1, ξ2)

t + C3

)]
= 0

which gives the equation

a1ξ
2
1λξ1 + a2ξ

2
2λξ2 = a4 − a3C3. (3.20)

Then
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(i) if a1a2 6= 0,

λ = (a4 − a3C3)

( −1

a1ξ1
+ ϕ(X)

)
(3.21)

whereϕ : R → R is an arbitrary function andX = 1/a2ξ2 − 1/a1ξ1;
(ii) if a1 = 0 anda2 6= 0,

λ = a3C3 − a4

a2
ξ−1

2 + ϕ(ξ1) (3.22)

whereϕ : R → R is an arbitrary function;
(iii) if a1 6= 0 anda2 = 0,

λ = a3C3 − a4

a1
ξ−1

1 + ϕ(ξ2) (3.23)

whereϕ : R → R is an arbitrary function.
We note that this solution is invariant relative to the algebra{K3 + C3P3}. A solution

which is not of the form given in (3.21), (3.22) or (3.23) is not invariant relative to any
algebra which has non-zero component onto the space generated byK1 andK2. It is thus
a non-reducible PIS.

From this first example, we observe that non-reducible solutions can be constructed due
to the presence of an arbitrary functionλ in w. Indeed, with four-dimensional algebras
and defect structureδ = 1, reducible solutions are invariant relative to three-dimensional
subalgebras. Then the corresponding reduced systems are ODEs and the invariant solutions
contain only arbitrary constants. Then, in this case, the existence of an arbitrary function in
a PIS assures the existence of non-reducible solutions which are obtained from equivalent
constraints given by equation (3.20).

In the next example, we perform a change of variables to facilitate the computation of
the PIS. Furthermore, the functions on which no constraints are imposed are not included
among the variablesu, v, w or a, but among the newly-defined variables.

Example 2. Consider the algebra{J3, P1, P2, P3}. We obtain the set of functionally
independent invariants

{(u2 + v2)1/2, w, a, t}. (3.24)

We make the change of variables

u = r cosθ v = r sinθ (3.25)

and the new invariants are

r, w, a, t. (3.26)

The new invariants simplify the calculations, compared to those given in (3.24). We have

rank

(
∂(r, w, a)

∂(r, w, a, θ)

)
= 3. (3.27)

Thus the PIS which we will calculate will have defect structureδ = 1. The equations giving
the orbits of this solution are

r = R(t) w = H(t) a = A(t). (3.28)
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Then, the expressions for this solution are given in (3.28) and we obtainu and v from
(3.25), whereθ = θ(t, x, y, z). We calculate the derivatives of the functionsu, v, w anda

and we obtain the following system of equations:

A′ + RA

k
[cos(θ)θy − sin(θ)θx ] = 0 R′ = 0

θt + R cos(θ)θx + R sin(θ)θy + Hθz = 0 H ′ = 0.

(3.29)

Then R = C1 and H = C2, where C1, C2 are arbitrary real constants. We solve the
system (3.29) forθx andθy and we obtain

θx = C−1
1 [− cos(θ)(θt + C2θz) + k sin(θ)ρ ′]

θy = −C−1
1 [sin(θ)(θt + C2θz) + k cos(θ)ρ ′]

(3.30)

whereρ(t) = ln(A). The compatibility conditions, obtained from (3.30), give the equation

ρ ′′ − k(ρ ′)2 = 0. (3.31)

The solution of equation (3.31) is

ρ = ln(C4t + C5)
−1/k

and so

A = (C4t + C5)
−1/k.

Thus we obtain

θ = ϕ(ξ1, ξ2, ξ3) (3.32)

with ϕ being implicitly defined by the equation

ϕ = cos−1

[
C4

C1C5
ξ1 + F

(−C1C5

C4
sin(ϕ) + ξ2, ξ3

)]
(3.33)

whereF : R2 → R is an arbitrary function,ξ1 = x − C1t cos(θ), ξ2 = y − C1t sin(θ) and
ξ3 = z − C2t . Hence the solution is

u = C1 cos(θ) v = C1 sin(θ) w = C2 a = (C4t + C5)
−1/k (3.34)

whereθ is defined from (3.32) and (3.33). We have obtained non-reducible solutions because
(3.34) contains an arbitrary function. Such functions are determined exactly in the same
manner as in example 1.

In table 1, we present several examples of PISs which we have obtained from four-
dimensional subalgebras of the symmetry algebra of system (1.4). We find in this table
the following information: (a) the first column gives the algebras from which we compute
the solutions; (b) in the second column we give the invariants of the algebras; (c) in
the third column we give the expressions of the dependent variables, corresponding to
equations (2.11) and (2.12); (d) in the fourth column we give the solutions; and (e) in the
last column we specify parameters which appear in the expressions of the solutions. Note
that the solution, corresponding to the algebra{P2 + K3, K2, P3, P1}, is not invariant with
respect to any three-dimensional subalgebras of the symmetry algebra of equations (1.4).
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Table 1. Non-reducible partially-invariant solutions of the system of equations for isentropic
flows in (3+ 1) dimensions (λ : R2 → R represents an arbitrary function and theCi ’s represent
arbitrary constants).

Algebras Invariants Dependent variables Solutions Remarks

{K1, K2, P1, P3} {y − vt, w, a, t} u = u(t, x, y, z) u = x+λ(ξ1,ξ2)
t−C1

ξ1 = t
y−C2

v = y−G(t)
t

v = y−C2
t

ξ2 = z − C3t

w = H(t) w = C3

a = A(t) a = C4(t (t − C1))
−1/k

{K1, K2, P1, P3 + αP2} α > 0 {y − αz − vt, w, a, t} u = u(t, x, y, z) u = x+λ(ξ1,ξ2)
t−C1

ξ1 = C3t − z

v = y−αz−G(t)
t

v = y+αC3t−αz−C2
t

ξ2 = t
y+αC3t−αz−C2

w = H(t) w = C3

a = A(t) a = C4(t (t − C1))
−1/k

{K1 + P3, K2, P1, P2} {z − u, w, a, t} u = z − F(t) u = z − C3t − C1 ξ1 = z − C3t

v = v(t, x, y, z) v = y+λ(ξ1,ξ2)
t+C2

ξ2 = C3x − (z − C3t − C1)z

w = H(t) w = C3

a = A(t) a = C4(t + C2)
−1/k

{P1, P2P3, K3} {u, v, a, t} u = F(t) u = C1 ξ1 = x − C1t

v = −G(t) v = C2 ξ2 = y − C2t

w = w(t, x, y, z) w = z+λ(ξ1,ξ2)
t+C3

a = A(t) a = C4(t + C3)
−1/k

{P2 + K3, K2, P3, P1} {u, y − vt − w, a, t} u = F(t) u = C2 g : R → R, arbitrary
v = v(t, x, y, z) v = (p−qt)y+qz−qC3t+g(ξ)

1+pt−qt2 ξ = x − C2t

w = y − vt + H(t) w = y−qtz+C3(1+pt)−tg(ξ)

1+pt−qt2 p, q ∈ R
a = A(t) a = C1

(1+pt−qt2)1/2
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4. Invariant solutions

The graph of aG0-invariant solution is an invariant set, with respect to the groupG0, unlike
a PIS. The groupG0 must also satisfy the following two conditions: (i) the dimension of
the orbits in the spacesX and X × U is the same; and (ii) dim(G0) < p. The algorithm
to construct these solutions can be obtained from the one presented in section 2 by setting
δ = 0. We obtain a reduced system, which is expressed only in terms of the invariants
and their derivatives with respect to the symmetry variable, from which we obtain the
invariant solutions. Now, we present several examples which illustrate the calculation of
invariant solutions. In [10], an optimal system of invariant solutions has been obtained for
the system (1.4), with respect to the three-dimensional subgroups of the symmetry group of
this system.

Example 3. Cylindrical solutions. We consider the algebra generated by

J3 = x∂y − y∂x + u∂v − v∂u P0 = ∂t P3 = ∂z. (4.1)

The global invariants are

s = (x2 + y2)1/2 81 = (u2 + v2)1/2, w, a

82 = sin−1

(
x

(x2 + y2)1/2

)
− sin−1

(
u

(u2 + v2)1/2

)
(4.2)

wherex2 + y2 6= 0, u2 + v2 6= 0 ands is the symmetry variable. As our symmetry variable
is s, the invariant solution will be of the cylindrical type. We form the expressions

(u2 + v2)1/2 = F(s) sin−1
(x

s

)
− sin−1

( u

F

)
= G(s)

w = H(s) a = A(s)

(4.3)

which give us an expression for an invariant function in the space of the invariants. Then
we have

u = F

s
(x cos(G) − y sin(G)) v = F

s
(y cos(G) + x sin(G))

w = H a = A.

(4.4)

From this, we calculate the partial derivatives of the dependent variables and we obtain

ux = x

s2
(x cos(G) − y sin(G))F ′ + F

s2
(y cos(G) + x sin(G))

(y

s
− xG′

)
uy = y

s2
(x cos(G) − y sin(G))F ′ − F

s2
(y cos(G) + x sin(G))

(x

s
+ yG′

)
ut = uz = 0

vx = x

s2
(y cos(G) + x sin(G))F ′ − F

s2
(x cos(G) − y sin(G))

(y

s
− xG′

)
vy = y

s2
(y cos(G) + x sin(G))F ′ + F

s2
(x cos(G) − y sin(G))

(x

s
+ yG′

)
vt = vz = 0

wt = wz = 0 wx = x

s
H ′ wy = y

s
H ′

at = az = 0 ax = x

s
A′ ay = y

s
A′.

(4.5)
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We substitute expressions (4.5) into (1.4), and we obtain the equations

F cos(G)A′ + A

k

(
cos(G)F ′ +

(
cos(G)

s
− sin(G)G′

)
F

)
= 0 (4.6)

cos(G)(x cos(G) − y sin(G))FF ′ − cos(G)(y cos(G) + x sin(G))F 2G′

−sin(G)

s
(x sin(G) + y cos(G))F 2 + kxAA′ = 0 (4.7)

cos(G)(y cos(G) + x sin(G))FF ′ + cos(G)(x cos(G) − y sin(G))F 2G′

+sin(G)

s
(x cos(G) − y sin(G))F 2 + kyAA′ = 0 (4.8)

s cos(G)H ′ = 0. (4.9)

These four equations do not form the reduced system because equations (4.7) and (4.8) are
not expressed only in terms of the invariants. However, the following combinations of the
equations, with variable coefficients,

x(4.8) − y(4.7) and x(4.7) + y(4.8) (4.10)

eliminate all non-invariant terms and we obtain the equations

sin(G)FF ′ + cos(G)F 2G′ + s−1 sin(G)F 2 = 0 (4.11)

s2 cos2(G)FF ′ − s2 cos(G) sin(G)F 2G′ − s sin2(G)F 2 + ks2AA′ = 0. (4.12)

The reduced system is thus formed by equations (4.6), (4.9), (4.11) and (4.12). Our method
has led us to two types of solution:F andH are arbitrary functions of the variables,

G = (2k + 1)

2
π(k ∈ N) and A = ±

(
2

k

∫
F 2

s
ds

)1/2

(4.13)

and

F = C1(s sin(G))−1 H = C4 A = C2

[
tan(G/2)(tan(G/2) + 1)

1 − tan(G/2)

]1/k

(4.14)

whereG is defined implicitly by the equation

s2 sin2(G)

[
−2

C2
2

C2
1

∫ (
tan(G/2)(1 + tan(G/2))2/k

1 − tan(G/2)

)
1

sin(G) · cos(G)
dG + C3

]
− 1 = 0

whereC1 6= 0, (2k+1)π < G < ((4k+3)/2)π or 2kπ < G < ((4k+1)/2)π (k ∈ Z), which
guarantee the existence of real non-singular solutions. Since we have explicit expressions
for the functionsF , G, H andA, we substitute them into equations (4.4) and we find an
invariant solution of the system (1.4) with respect to the algebra considered.

In the next example, we show that an algebra which should give only PISs can give
invariant solutions under some conditions on the functionsu, v, w anda. This solution is
of spherical type.

Example 4. Spherical solutions. We consider the algebra{J1, J2, J3}. The global invariants
of this algebra are:

t s = (x2 + y2 + z2)1/2 81 = (u2 + v2 + w2)1/2

82 = xu + yv + zw 83 = a.

We have

rank

(
∂(81, 82, 83)

∂(u, v, w, a)

)
= 3.
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Therefore, we cannot obtain invariant solutions from these invariants by the SRM. The
equations giving the orbit of the graph are

u = u(t, x, y, z) v = g(s, t) − xu − zw

y

w = z(xs − g(u, t)) ± y[(f 2(s, t) − u2)(y2 + z2) − (xu − g(s, t))2]1/2

y2 + z2

a = A(s, t)

(4.15)

where81 = f (s, t) and82 = g(s, t) are arbitrary functions. Substituting equation (4.15)
into (1.4) gives us the reduced system

At + gAs

s
+ A

k

[
ux +

(
xyz(xu − g) + zyu(y2 + z2) − ϕxy2

y(y2 + z2)ϕ

)
× uy −

(
zxϕ + (y2 + z2)yu + xy(xu − g)

(y2 + z2)ϕ

)
uz

+ gs

s
− z(z2 + y2 − 1)

y(y2 + z2)
ϕ + z2(z2 + y2 − 1)

y2(y2 + z2)2
(xu − g)

]
= 0

ut + uux −
(

y(xu − g) + zϕ

y2 + z2

)
uy +

(
yϕ − z(xu − g)

y2 + z2

)
uz + kxAAs

s
= 0

gt + ggs

s
+ ksAAs − f 2 = 0

gt + ggs

s
+ k

(
x2 + y2

s
+ z

)
AAs − f 2 = 0

(4.16)

whereϕ = [(f 2 − u2)(y2 + z2) − (xu − g)2]1/2. To compute the solutions of (4.16), we
have to satisfy the compatibility conditions (see the algorithm presented in section 2.1).
Thus the solution will be a non-reducible PIS, because this algebra does not contain any
two-dimensional subalgebras. We will not continue with these calculations here, but we
will show that we can obtain solutions with spherical symmetry by considering functions
with a special form.

In order to do this, we write the functionsu, v, w anda in the following form:

uµ = xµf (s, t) a = A(s, t) µ = 1, 2, 3 (4.17)

wheref andA will be determined from the condition that the functions defined in (4.17)
are solutions of (1.4). Since

Ji(u
µ − xµf (s, t)) = 0 Ji(a − A(s, t)) = 0 µ, i = 1, 2, 3

the functions in (4.17) are invariant with respect to the algebra{J1, J2, J3}. This case
corresponds to a non-stationary flow with spherical symmetry, which is irrotational.
System (1.4) is thus reduced to the equations

At + sf As + k−1A(3f + sfs) = 0 ft + sffs + ks−1AAs + f 2 = 0. (4.18)

We look for solutions of (4.18) by the method of separation of variables. Hence, we put
A = α1(t)h1(s), f = α2(t)h2(s). We obtain

α1 = εk−1/2t−1 α2 = λ−1
1 t−1 (λ1 ∈ R andλ1 6= 0, t > 0, ε = ±1) (4.19)

and the non-autonomous ODE system

dh1

ds
= sh1h2((k − 1)λ1 − 2h2)

(ks2h2
2 − λ2

1h
2
1)

dh2

ds
= kλ1s

2h2
2 + 3λ2

1h
2
1h2 − kλ3

1h
2
1 − ks2h2

2

s(ks2h2
2 − λ2

1h
2
1)
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whose solutions exist ifh2
1 6= λ−2

1 ks2h2
2. For the stationary case (i.e. iff and A do not

depend ont in expressions (4.17)) we obtain the solution

uµ = C1x
µs−(k+3)/k+1 a = ε(−k)1/2C

−1/k

1 s−2/k+1 µ = 1, 2, 3

whereε = ±1, C1 > 0 andx2 + y2 + z2 > 0. These conditions guarantee the existence of
real and non-singular solutions.

Example 5. Conical solutions. We consider the algebra{J1, C, K1}. The corresponding
invariants are the symmetry variables = t−1(y2 + z2)1/2, F(s) = x − ut ,

G(s) = sin−1

(
y

(y2 + z2)1/2

)
− sin−1

(
y − vt

((y − vt)2 + (z − wt)2)1/2

)
H(s) = ((y − vt)2 + (z − wt)2)1/2

andA(s) = at . Then, the unknown functions take the form

u = x − F

t
v = y

t
− H

st2
(y cos(G) − z sin(G))

w = z

t
− H

st2
(z cos(G) + y sin(G)) a = A

t
.

(4.20)

We obtain the reduced system

HA′ + A

3

(
H ′ − H tan(G)G′ + H

s

)
= 0

sH cos(G)F ′ = 0

s sin(G)H ′ + sH cos(G)G′ + H sin(G) = 0

s cos2(G)HH ′ − s sin(G) cos(G)H 2G′ + 3sAA′ − H 2 sin2(G) = 0.

We have calculated the following solutions. IfH cos(G) 6= 0, thenH is implicitly defined
by

(−3C4)
1/2(s2H 6 − C2

2)1/6sH + C3 − s = 0

and

G = cos−1(s−1H−1(s2H 2 − C2
2)1/2) F = C1

A = C4(s
2H 2 − C2

2)−1/6

whereC4 < 0. Since we have an explicit expression forH , we substituteF , G, H andA

into equations (4.20) in order to get an invariant solution of (1.4). IfH cos(G) = 0, two
solutions are possible:

(i)

u = x − F(s)

t
v = y

t
w = z

t
and a = C4

t

(ii)

u = u − F(s)

t
v = y

t
+ ε

C3z

t2s2
w = z

t
− ε

C3y

t2s2

and a = ε
(3C4s

2 − C2
3)

31/2st
(ε = ±1)

whereF is an arbitrary function ofs. These solutions represent centred waves with conical
symmetry. Some of them have been studied by Burnat [11, 12] and Rozdestvenski and
Janenko [13].
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Example 6. Algebraic solutions. We consider the algebra

{K1 + α1P1 + α2P2 + α3P3, K2 − α2P1 + β1P2 + β2P3, K3 − α3P1 − β2P2}
whereα2 > 0, β2 > 0; α1, α3, β1 ∈ R. The invariants are the symmetry variablet ,

F(t) = x − (t + α1)u + α2v + α3w

G(t) = y − α2u − (t + β1)v + β2w

H(t) = z − α3u − β2v − tw

andA(t) = a. From these invariants, we obtain the following expressions for the dependent
variables:

u = (F − x)(t (t + β1) + β2
2) + (G − y)(α2t − α3β2) + (H − z)(α3(t + β1) + α2β2)

11

v = (x − F)(α2t + α3β2) + (G − y)(t (t + α1) + α2
3) + (H − z)(β2(t + α1) − α2α3)

11

w = [(x − F)(−α3(t + β1) + α2β2) − (G − y)(β3(t + α1) + α3α2)

+(H − z)((t + α1)(t + β1) + α2
2)](11)

−1

where

11 = t3 + (β1 + α1)t
2 + (α1β1 + β2

2 + α2
3 + α2

2)t + α2
3β1 + α1β

2
2.

The reduced system is

A′ + A

k

(3t2 + 2t (β1 + α1) + α1β1 + β2
2 + α2

3 + α2
2)

(t3 + (β1 + α1)t2 + (α1β1 + β2
2 + α2

3 + α2
2)t + α2

3β1 + α1β
2
2)

= 0

(t (t + β1) + β2
2)F ′ + (α2t − α3β2)G

′ + (α3(t + β1) + α2β2)H
′ = 0

−(α2t + α3β2)F
′ + (t (t + α1) + α2

3)G
′ + (β2(t + α1) − α2α3)H

′ = 0

(−α3(t + β1) + α2β2)F
′ − (β3(t + α1) + α3α2)G

′ + ((t + α1)(t + β1) + α2
2)H

′ = 0.

The solution has the form

u = (C1 − x)(t (t + β1) + β2
2) + (C2 − y)(α2t − α3β2) + (C3 − z)(α3(t + β1)α2β2)

11

v = (x − C1)(α2t + α3β2) + (C2 − y)(t (t + α1) + α2
3) + (C3 − z)(β2(t + α1) − α2α3)

11

w = [(x − C1)(−α3(t + β1) + α2β2) − (C2 − y)(β3(t + α1) + α3α2)

+(C3 − z)((t + α1)(t + β1) + α2
2)](11)

−1

a = C4(−11)
−1/k.

Then the solution is a rational function. In order that the functiona be well defined, real
and non-singular for everyk, we must impose the condition11 < 0. Thent ∈ D where
D = (−∞, a1) ∪ (a2, a3), when 11(ai) = 0, ai ∈ R (i = 1, 2, 3), and a1 < a2 < a3;
D = (−∞, a1), whena1 is the only root of11. Therefore, the domain of definition of the
solution isD × R3. On this domain, no gradient catastrophe appears and no shock wave
can be produced [14]
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5. Final remarks

The main difference between the method of calculation of the PISs proposed by Ovsiannikov
and our method lies in the choice of the groups from which we calculate the PISs.
Ovsiannikov suggests that every symmetry group of a system of differential equations can
generate PISs, for a given defect structureδ, even if the group fulfills the conditions which
allow us to construct invariant solutions from this group. In this case, we should use the
first method of calculation presented in section 2 in order to obtain these solutions (i.e. the
method with the matrix of characteristics). But the solutions which are obtained are not
genuine PISs. Indeed, we can always find coordinates in which these solutions are invariant.

To conclude, let us remark that the method developed here, to obtain PISs, can also be
used to describe phenomena concerning the superposition of waves in nonlinear continuous
media, and in some cases we are able to determine the points at which the gradient
catastrophe takes place. An example is the group generated by{J1, P2, P3}. We obtain
the PIS

u = s v =
√

G(r) − w2 w = H(r) a = k−1s + C1 (5.1)

where the Riemann invariants are

s = (C1t − x)(1 − βt)−1 β = k−1(k + 1)

and

r = (1 − βt)−1/β(x + C1(β − 1)−1(t − 1))

whereG and H are arbitrary functions of the invariantr, C1 is an arbitrary constant and
β 6= −1. The solution (5.1) has rank two and therefore represents non-scattering double
Riemann waves [15].
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